Traumatic Brain Injury Blog

head

Tagged with “Mild Traumatic Brain Injury”

May 13, 2020

Emory Study Finds that Underdiagnosis of Mild Traumatic Brain Injury is a Pervasive Problem in the Emergency Setting

An article published in April, 2020 by the American College of Emergency Physicians reports on evidence that underdiagnosis of Mild Traumatic Brain Injury (mTBI) “is a pervasive problem in the emergency setting,” and that even patients who receive a diagnosis are unlikely to receive appropriate discharge education and are therefore at risk of missing opportunities for treatment, referral and improvement in outcomes. Koval et. at., Concussion Care in the Emergency Department: A Prospective Operational Brief Report, Annals of Emergency Medicine 2020 Apr;75(4):483-490. Read More

March 27, 2020

Neuroendocrine issues, often overlooked following TBI, leave patients with unnecessary chronic symptoms

In prior posts I have discussed the growing evidence that traumatic brain injuries, even so-called “mild” traumatic brain injuries (mTBI), can lead to neuroendocrine dysfunction (NED) – most commonly growth hormone (GH) deficiency due to pituitary dysfunction. Although growth hormone deficiency often results in physical symptoms such as loss of lean muscle mass and strength, increased body fat around the waist, and dyslipidemia, other common GH deficiency symptoms overlap with the symptoms of “persistent post-concussion”- such as fatigue, poor memory, anxiety, depression, emotional lability, poor attention and poor concentration.

My earliest post on this issue discussed the August 2012 Department of Defense (DOD) clinical recommendations for screening for neuroendocrine dysfunction in “mild” traumatic brain injury (“mTBI”) cases – where indicative symptoms persist for more than three month or appear within three years. The guidelines contemplated a simple blood test, but subsequent studies, also discussed in this blog, showed that the only reliable means of detecting GH deficiency is provocative testing, which is expensive and takes several hours (the guidelines do suggest further assessment by an endocrinologist, even where the screening test is negative, if symptoms of NED persist.) Read More

January 28, 2020

Improving sleep with morning exposure to blue light leads to quicker recovery from uncomplicated mTBI

I have discussed research on the important role of sleep in TBI recovery in prior posts. Accordingly, I have encouraged clients to get help with sleep issues as soon as they become apparent after an injury. Studies have shown that approximately 50% of patients diagnosed with mTBI (“mild traumatic brain injury”) experience chronic sleep disruption. There is evidence that the brain repairs itself during sleep, which is one of the reasons why poor sleep can delay recovery. Poor sleep following a brain injury has been associated with disturbance in the normal rhythm of melatonin production.

A recent double-blind, placebo-controlled study by researchers at the University of Arizona, published in Neurobiology of Disease 134 (2020) 104579 (funded by the US Army Medical Research and Development Command ) demonstrated that morning exposure to blue wavelength light improves sleep quality and leads to measurable cognitive improvements and positive changes in brain anatomy and function as measured by functional and structural MRIs. Read More

June 6, 2019

AMA Journal concludes that “the term mild TBI misrepresents the immediate and long-term burden of TBI”

In 2003 CDC sent a report to Congress on “mild” traumatic brain injuries. (MTBI, also sometimes called “concussion.”) The report cautioned that, contrary to past understanding, “mild” brain injuries can cause serious, permanent problems:

“In recent decades, public health and health care communities have become increasingly aware that the consequences of mild traumatic brain injury (MTBI) may not, in fact, be mild. Epidemiologic research has identified MTBI as a public health problem of large magnitude, while clinical research has provided evidence that these injuries can cause serious, lasting problems.”

Read More

August 2, 2018

Pituitary Dysfunction Following TBI: Update on the Importance of Stimulation Testing

In our May, 2014 post, we reported on research showing that traumatic brain injury, including mild traumatic brain injury (mTBI), can damage and cause dysfunction in the pituitary gland resulting in deficiencies in key hormones released by the pituitary gland, such as Growth Hormone (GH). As we explained in that post, the anatomy of the pituitary gland makes it particularly susceptible to the sheering injuries seen in TBI. The pituitary gland, which is housed in a bony structure at the base of the skull, controls the function of most other endocrine glands and is therefore sometimes called the “master gland.” Read More

May 16, 2018

Large Study Finds Increased Risk of Dementia Diagnosis in Veterans with Mild Traumatic Brain Injury

In a propensity-matched cohort study of more than 350,000 veterans with and without traumatic brain injuries (TBI), mild traumatic brain injury (mTBI) without loss of consciousness was associated with more than a twofold increase in the risk of a dementia diagnosis, even after adjusting for medical and psychiatric co-morbidities. This large epidemiological study was recently published in JAMA Neurology.  Approximately 2.8 million TBIs occur each year in the United States; approximately 80% are in the “mild” category.

Although prior studies of the association between mTBI and dementia have been mixed, this study, among the largest epidemiological studies to date, adds to the weight of evidence suggesting that even mild TBI is associated with an increased dementia diagnosis risk. Read More

August 17, 2017

Concussion Can Cause Abnormalities in Organ Systems Through Autonomic Nervous System Dysfunction

The open source journal Brain Science has just published a survey of literature demonstrating that a mild traumatic brain injury (mTBI) , otherwise known as concussion, is a complex pathophysiological process that can have a systemic effect on the body aside from solely impairing cognitive function. According to the article, “dysfunction in the autonomic nervous system (ANS) has been found to be a major factor in the symptomatology in TBI, including in mTBI” and can “induce abnormalities in organ systems throughout the body.” Read More

July 31, 2017

New Information on Photophobia following TBI

One of the most common symptoms following TBI is photophobia, an intense intolerance to light that can cause significant discomfort, interfere with activities of daily living, and contribute to post traumatic headaches. It can impact the ability to work at computer screens and in well-lit offices and can cause a great deal of fatigue for patients who try to return to usual activities. Avoiding light can be very limiting. Read More

June 8, 2017

New Study Highlights Importance of Vision Testing following Concussion (mTBI)

The May 16, 2017 issue of The American Journal of Sports Medicine highlights the significance of subtle changes in vision following concussion in predicting more prolonged recovery.   The study found that a diagnosis of  “convergence insufficiency” increased the odds of prolonged recovery by 12.3 fold. Read More

February 6, 2017

New Studies Identify Imaging Findings Associated with Persistent Post-Concussion Syndrome

A topic frequently addressed in this blog is the building body of evidence showing that the minority of patients who have long term, sometimes permanent, symptoms following concussion typically experience those symptoms because of injury to the brain, not to achieve some “secondary gain.” Although scientists do not have a clear understanding about why some people are more vulnerable to these injuries, we know as discussed in prior posts, that certain factors can play a role, such as genetics, prior head injuries and a history of migraines. Two recently published studies contribute to our understanding that real pathology likely underlies most persistent symptoms and that this pathology can be identified with advanced neuroimaging techniques. Read More